If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2)-18x+61=0
a = 1; b = -18; c = +61;
Δ = b2-4ac
Δ = -182-4·1·61
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{5}}{2*1}=\frac{18-4\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{5}}{2*1}=\frac{18+4\sqrt{5}}{2} $
| 3x+12=5×+16 | | 13x+4=78 | | −2x²+3x−4=0 | | 180=3x+28+5x+52+2x-10 | | x=3x+28+5x+52+2x-10 | | 6-(-5x+4)=2x-8 | | 6-(5x+4)=2x-8 | | 450+22x=1660 | | -2^2+11x-28=0 | | (3x-9)x(2x)=38 | | X-3=2x-87 | | 1+n÷-3=6 | | 1/6x+x+2x=90 | | 4x+40+3=180 | | x+5+(x+1)=12 | | 7(7-4x)=38+x | | 9+6n=-3(4+5n) | | 2/3x-1/6=0 | | 3(-5n-8)=36-5n | | 2/3x+5/6=1 | | -12x-5=-4x+19 | | 2x=+8=16 | | -2x-18=-6x-10 | | -2x-18=-6x | | 7–4x=14+3x | | -6-n=-3(n-6)-n | | 6(1+2x)-x=-7-2x | | f-38=225 | | x/183=245 | | 2x+5=7x-40. | | 0.2x+15=0.25x+7 | | 8z-7z=16 |